Problem Set 7 Ch 153a – Winter 2025 Due: 28 February 2025

1. Fox and coworkers (*Science* **1990**, *247*, 1069-1071) reported the kinetics of electron transfer in a series of Ir dimers of the following type:

A plot of the driving force dependence of the rates and a data table are show.

Table 2. Driving forces and rate constants for ET. Standard errors are 0.1 eV for $-\Delta G^{\circ}$ and $\pm 10\%$ for k_{ET} , except where noted.

Donor	Acceptor	$-\Delta G^{\circ}$ (eV)	k_{ET} (s^{-1})
³ Ir ₂ * ³ Ir ₂ * ¹ Ir ₂ * ⁴ -Phpy ⁴ -Phpy	2,4,6-Me ₃ py ⁺	0.08	$3.5 imes 10^6$
³ Ir ₂ *	4-Mepy ⁺	0.21	$1.7 imes10^{8}$
$^{1}\mathrm{Ir}_{2}^{-}$	2,4,6-Me3py+	0.58	$2.7 imes10^{10}$
¹ Ir ₂ [*]	4-Mepy ⁺	0.71	$5.0 imes10^{10*}$
$^{1}Ir_{2}^{*}$	pv^+	0.89	$1.1 imes 10^{11}$
$^{1}Ir_{2}^{-*}$	4-Phpy ⁺	0.97	$> 1.1 \times 10^{11}$
4-Phpy	$\operatorname{Ir_2}^+$	1.53	$2.0 imes10^{10}$
4-Mepv	Ir_2^+	1.61	$6.7 imes 10^{9}$
pv 17	Ir_2^+	1.79	$3.3 imes 10^{9}$
4-Mepy py 2,4,6-Me ₃ py	$\begin{array}{c} {}^{P7} \text{Phpy}^+ \\ {}^{H7} \text{Ir_2}^+ \\ {}^{H7} \text{Ir_2}^+ \\ {}^{H7} \text{Ir_2}^+ \\ {}^{H7} \text{Ir_2}^+ \end{array}$	1.92	$6.7 imes 10^7$

Semiclassical electron-transfer theory predicts that intramolecular rates can be described by the following equation:

$$k_{ET} = \sqrt{\frac{4\pi^3}{h^2\lambda RT}} H_{AB}^2 \exp\left\{-\frac{(\Delta G^\circ + \lambda)^2}{4\lambda RT}\right\}$$

On the basis of the electron transfer rate data, what is the value of H_{AB} for this series of complexes? Predict the positions, extinction coefficients, and widths of the $Ir \rightarrow (R-py)^+$ charge transfer absorption bands for the four Ir compounds used in this study.

2. Photoinduced electron-transfer reactions that are relevant to photoredox catalysis are depicted in the following scheme:

Assume that immediately after excitation by a pulsed laser the concentration of the excited metal complex is $[*M]_0$ and that $[*M]_0 << [Q]$ for all quencher concentrations under consideration. In the absence of quencher *M decays back to M with rate constant k_0 , and *M reacts with the quencher with a rate constant k_0 .

- a. Derive a rate law for the time dependence of [*M].
- b. Solve the rate law to give an expression describing the time dependence of [*M].
- c. Derive an expression for the quantum yield of Q^- formation.
- d. Assume that k_0 can take on the values: $1 \times 10^9 \text{ s}^{-1}$; $1 \times 10^8 \text{ s}^{-1}$; $1 \times 10^7 \text{ s}^{-1}$; $1 \times 10^6 \text{ s}^{-1}$. Assume also that k_0 can take on the values: $1 \times 10^9 \text{ M}^{-1} \text{s}^{-1}$; $1 \times 10^8 \text{ M}^{-1} \text{s}^{-1}$; $1 \times 10^7 \text{ M}^{-1} \text{s}^{-1}$. Find the quencher concentration required to give 90% quantum yield of [Q⁻] for all twelve pairs of k_0 and k_0 rate constants.
- e. If the quenching reaction yields a product concentration of $[Q^-]_{\infty}$, derive an expression for the half-time of the reaction to regenerate M and Q.