Problem Set 2 Ch153a – Winter 2025 Due: 24 January 2025

- 1. (10 points) Consider the tetragonal oxo complex, $[L_5MO]^{n+}$ (L is an uncharged ligand, for example, H_2O or NH_3).
 - a. Construct an MO diagram for $[L_5MO]^{n+}$ using the following orbitals in the C_{4v} point group: five metal 3d orbitals, one set of five ligand σ orbitals, and the oxo $\sigma + 2p\pi$ orbitals.
 - b. Predict the ground state electronic configuration and the metal-oxo bond order for each of the following:

[L ₅ VO] ²⁺	VIV	<i>d</i> ¹
[L ₅ CrO] ³⁺	Cr ^v	<i>d</i> ¹
[L₅CrO] ²⁺	Cr ^{IV}	d ²
[L₅MnO] ³⁺	Mn [∨]	d ²
[L ₅ MnO] ²⁺	Mn ^Ⅳ	d ³
[L₅FeO] ²⁺	Fe ^{IV}	d ⁴

- c. Do you think that $[L_5CoO]^{2+}$ is a stable complex? Why or why not?
- 2. (10 points) Electronic Structure and Spectra of Metal Nitrido Complexes

The $d\pi$ -orbital splitting for a tetragonal nitrido-metal complex is shown above.

The following states arise from the d^1 and d^2 configurations in this scheme:

d^1 :		
	² E[(xz,yz) ¹]	$E = \Delta_{\pi}$
	² B ₂ [(xy) ¹]	E = 0
d ² :		
	³ A ₂ [(xz,yz) ²]	$E = 2\Delta_{\pi} + A - 5B$
	¹ A ₁ [(xz,yz) ²]	$E = 2\Delta_{\pi} + A + 7B + 4C$
	¹ B ₁ [(xz,yz) ²]	$E = 2\Delta_{\pi} + A + B + 2C$
	¹ B ₂ [(xz,yz) ²]	$E = 2\Delta_{\pi} + A + B + 2C$
	¹ E[(xy) ¹ (xz,yz) ¹]	$E = \Delta_{\pi} + A + B + 2C$
	³ E[(xy) ¹ (xz,yz) ¹]	$E = \Delta_{\pi} + A - 5B$
	¹ A ₁ [(xy) ²]	E = A + 4B + 3C

The absorption spectra of $Cr^{V}(N)(CN)_{5}^{3-}$ and $Mn^{V}(N)(CN)_{5}^{3-}$ are shown below.

In $Cr^{V}(N)(CN)_{5}^{3-}$, the lowest energy spin-allowed absorption band is at 23,300 cm⁻¹.

In $Mn^{V}(N)(CN)_{5^{3^{-}}}$, the lowest energy spin-allowed absorption band is at 19,400 cm⁻¹.

- a. Provide an assignment for the lowest energy spin-allowed absorption band in each complex.
- b. Use the foregoing orbital splitting diagram and the state energies to determine the values of Δ_{π} in the Cr and Mn complexes. Assume that $B = 500 \text{ cm}^{-1}$ and C/B = 4.

