Problem Set 1 Ch153a – Winter 2025 Due: 21 January 2025

- 1. (10 points) Construct a diagram illustrating the dependence of electrode potentials (*vs.* NHE) on pH (Pourbaix diagram) for the following redox couples:
 - a. $O_2 + e^- + H^+ \rightarrow HO_2^{\bullet}$
 - b. $HO_2^{\bullet} + e^- + H^+ \rightarrow H_2O_2$
 - c. $H_2O_2 + e^- + H^+ \rightarrow HO^{\bullet} + H_2O$
 - d. $HO^{\bullet} + e^- + H^+ \rightarrow H_2O$
 - e. $O_2 + 2e^- + 2H^+ \rightarrow H_2O_2$
 - f. $H_2O_2 + 2e^- + 2H^+ \rightarrow 2H_2O$
 - g. $O_2 + 4e^- + 4H^+ \rightarrow 2H_2O$

In constructing your diagram, use the following standard potentials:

$O_2 + e^- \rightarrow O_2^{\bullet-}$	<i>E</i> ° = –0.35 V <i>vs.</i> NHE
$\mathrm{HO_2}^{\bullet} + e^- \rightarrow \mathrm{HO_2}^-$	<i>E</i> ° = 0.76 V <i>vs.</i> NHE
$\mathrm{H}_{2}\mathrm{O}_{2} + e^{-} + \mathrm{H}^{+} \rightarrow \mathrm{HO}^{\bullet} + \mathrm{H}_{2}\mathrm{O}$	<i>E</i> ° = 0.80 V <i>vs.</i> NHE
$HO^{\bullet} + e^- + H^+ \rightarrow H_2O$	<i>E</i> ° = 2.72 V <i>vs</i> . NHE

and the following pK_a values:

$\mathrm{HO}_{2}^{\bullet} \to \mathrm{O}_{2}^{\bullet-} + \mathrm{H}^{+}$	p <i>K</i> _a = 4.8
$H_2O_2 \rightarrow HO_2^- + H^+$	p <i>K</i> a = 11.62
$\rm HO^{\bullet} \rightarrow O^{\bullet-} + \rm H^+$	p <i>K</i> a = 11.7
$H_2O \rightarrow HO^- + H^+$	р <i>К</i> а = 14.0

The standard state for potentials is 25 °C, concentrations of 1 molal (1 m), partial gas pressures of 100 kPa, and the activity of water is taken to be unity. For the purposes of your diagram, assume the following conditions:

$$pO_2 = 100 \text{ kPa}$$

 $[HO_2^{\bullet}] + [O_2^{\bullet-}] = 1 m$
 $[H_2O_2] + [HO_2^{--}] = 1 m$
 $[HO^{\bullet}] + [O^{\bullet-}] = 1 m$

Your plot should span the range from pH 0 to pH 14.

- 2. (5 points) Using the data from your Pourbaix diagram give the electrode potentials for the redox couples *a*-*g* at the following pH values:
 - a. pH0 b. pH7 c. pH14
- 3. (5 points) Using the data from your Pourbaix diagram determine the standard free energy change for the following reaction:

 $2HO^{\bullet} \Longrightarrow H_2O_2$

4. (10 points) It should be clear from your Pourbaix diagram that the electrode potential for the four-electron, four-proton oxidation of water is substantially lower than those for some of the steps in the sequential one-electron oxidation of water to dioxygen. The stepwise oxidation of water, then, requires large overpotentials; these overpotentials can be reduced if the intermediates in the water oxidation sequence are bound to metal complexes as illustrated below. Define the potential for redox reaction *g* from question 1 (pH 7, 25 °C) to be equal to that for the oxygen evolving reaction (E_{OER}).

$$2H_2O + M(OH_2)_2^{n+}$$

Use the data from your Pourbaix diagram and the answer from question 3 (ΔG_1°) to estimate values for the equilibrium constants for binding to a generic metal center (M(OH₂)₂ⁿ⁺) of the intermediates in the water oxidation sequence, *i.e.*, K_1 , K_2 , K_3 , and K_4 .