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The Shapes of Electronic Absorption Bands 
 

Atomic spectra consist of very sharp (< 1 cm!1) lines.  Molecular electronic 
absorption and luminescence bands can be extremely broad, sometimes as much 
as several thousand wavenumbers.  The difference can be explained by the nature 
of the wavefunctions describing electronic states in molecules. 

 
The Hamiltonian for a molecule has the form: 

It is common to divide this into nuclear and electronic Hamiltonians (HN, HE): 

The nuclear coordinates are treated as parameters in the Schrödinger equation with 
the electronic Hamlitonian: 
 
 
The eigenvalues for this electronic Schrödinger equation (V(R)) are functions of the 
nuclear coordinates.  These energy functions are used as the potential energy in the 
nuclear Hamiltonian.  The nuclear Schrödinger equation is: 

 
 

If the nuclear potential energy function is approximated as harmonic, the 
wavefunctions P(R) will be modified Hermite polynomials.  The total molecular 
wavefunction, Q(R,r) will be given by the product: 

 
 

This approximation of separating nuclear and electronic coordinates is known as the 
Born-Oppenheimer or adiabatic approximation.  It is common to invoke the so-called 
crude Born-Oppenhemier or crude adiabatic approximation: 

 
 

In this expression, Ro is the equilibrium nuclear configuration for the electronic state. 
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The potential energy surfaces for different electronic states are represented as 
shown below (the vibrational levels in each surface are shown as horizontal lines): 

 
The positions of the minima and the force 
constants for different electronic states 
need not be the same.  The different 
electronic states will create different forces 
on the nuclei in the molecule resulting in a 
change in the equilibrium nuclear 
configuration as well as a change in 
vibrational force constants. 
 
Electronic absorption bands in molecules 
arise from electric dipole transitions.  The 
transition moment operator has the form: 
 
 
 
The transition moment integral will have 
the form: 
 
 
 
Substitution gives: 
 
 
 
If we invoke the Condon approximation, 
RE(R,r)  RE(Ro,r)  RE(r), we can separate 
the transition moment integral into two 
parts, an electronic component and a 
nuclear component. 
 
 
 

 The integral over the electronic coordinates (ME) determines the overall intensity of 
the absorption band; the integral over the nuclear coordinates determines the 
intensity distribution within the absorption band.  The overall intensity of an 
absorption or emission band depends on the square of the transition moment 
integral with a Boltzmann weighting of initial vibrational states and a sum over all 
possible final vibrational states: 
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 where P(vi) is the Boltzmann probability of being in initial vibrational level vi.  The 
squares of the vibrational overlap integrals are known as Franck-Condon factors.  
And the nuclear/electronic coordinate separation for electronic transitions is known 
as the Franck-Condon principle. 

 
If the vibrational motions are treated semi-classically, then the predicted bandshape 
is Gaussian: 

 
 
 

The parameter 8 is related to the magnitude of the distortion of the excited-state 
potential surface along normal coordinate Q (see figure below). 

 
  

But, nuclear motions cannot always be 
treated semi-classically.  If we use the 
quantum mechanical solution to the harmonic 
oscillator problem, we expect to see 
vibrational fine structure in absorption and 
luminescence spectra (see figure on the next 
page).  The bandshape consists of a 
progression of lines, separated by the 
vibrational frequency of the excited state in 
absorption, and the vibrational frequency of 
the ground state in luminescence.  These 
progression must be in totally symmetric 
vibrational modes, otherwise the Franck-
Condon factors would vanish for odd values 
of )v (the difference in vibrational quantum 
number) Using modified Hermite polynomials 
for the vibrational wavefunctions leads to 
recursion relations for Franck-Condon 
factors.  
 
If we invoke the additional approximations 
that ground and excited state frequencies are 
equal (  ), and that only the vi = 0 level is 
populated, then the intensity distribution in an 
absorption band is described by the following 
equation: 
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In the limit of large SHR, this distribution approaches a Gaussian, as you would expect 
from the classical treatment of the bandshape.  The parameter SHR is sometimes called 
the Huang-Rhys parameter, and it is related to the magnitude of the distortion along Q. 
For reasonably large values of SHR, it can be approximated by the following expression 
(where k is the force constant for the normal mode Q): 
 
 
 
In principle, then, analyses of absorption band profiles can provide information about 
the structures of molecules in electronic excited states.  This information can be used to 
confirm assignments of absorption bands to specific electronic excitations. 

 
 
In general, large excited-state 
distortions ()Q) lead to large 
SHR values, and broader 
absorption profiles. 
 
We can simulate the low-
temperature absorption spectra 
for different values of SHR for a 
distortion along a 400 cm!1 
vibrational mode (a typical M-L 
stretching frequency). 
 
The intensity in bands with 
small excited state distortions 
(SHR < 1) is carried mainly in the 
vi =0 6 vf =0 transition; the so-
called 0,0-line.  As distortions 
increase, the peak intensity 
decreases (because the 
oscillator strength remains 
constant).  In addition, the 
bands become broader and 
look more like Gaussians. 
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 The distortion parameters for the different SHR values (ST = 400 cm!1) are: 
 
         SHR   8, cm!1 
        0.1        40 
        0.5      200 
        1.0      400 
        2.5    1000 
        5.0    2000 
        10.0   4000 
 

Notice in the following figures that the widths of these absorption bands are on the 
order of these 8 values. 

 
Vibrational fine structure and the magnitudes of excited state distortions can be 
extremely helpful when trying to assign electronic absorption spectra. 
 

  

Predicted bandshapes for SHR = 0.1, 0.5, 1, 2.5, 5, 10 (fixed ordinate) 
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Predicted bandshapes for SHR = 0.1, 0.5, 1, 2.5, 5, 10 (scaled ordinate) 


