
Problem Set 1 Ch153a – Winter 2023 Due: 6 January 2023

1. Consider the electronic structure of tetrahedral MO_4^{n-} anions using a basis set of five metal d orbitals and twelve oxygen 2p orbitals. A convenient configuration of the oxygen orbitals is one in which one 2p orbital on each O-atom is oriented parallel to the M–O bond ($2p_\sigma$), and two orbitals on each O-atom are oriented perpendicular to the M–O bond ($2p_\pi$). Recall that the matrix for a C_n rotation about the z-axis is:

Ο <i>p</i> _σ	
Ορπ	

- b. Decompose the M*d*, Op_{σ} , and Op_{π} reducible representations into their component irreducible representations.
- c. Complete the qualitative molecular orbital diagram in the graphic for tetrahedral MO_4^{n-} anions using the Md, Op_{σ} , and Op_{π} basis set of orbitals. Label each orbital with its appropriate symmetry designation.
- d. Suggest an explanation for the energy separation between the Op_{σ} and Op_{π} prior to bonding with the metal *d* orbitals.
- e. For a d⁰ metal center, consider the following one-electron excitations: HOMO→LUMO; HOMO→LUMO+1; HOMO-1→LUMO; HOMO-1→LUMO+1. List the term symbols of the excited states that arise from each of these excitations. Which of these transitions are electric-dipole and spin-allowed?