Problem Set 9 ## Ch 153a - Winter 2022 Due: 9 March, 2022 1) The $Co(NH_3)_6^{2+}/Co(NH_3)_6^{3+}$ electron self-exchange reaction involves a large spin-state change, owing to the fact that the $Co(NH_3)_6^{2+}$ ground state is high-spin ($^4T_{1g}$) and the $Co(NH_3)_6^{3+}$ ground state is low-spin ($^1A_{1g}$). It has been suggested that a spin-state change in $Co(NH_3)_6^{2+}$, producing a 2E_g state, or in $Co(NH_3)_6^{3+}$, producing either a $^3T_{1g}$ or $^5T_{2g}$ state, precedes the electron transfer. Use the spectroscopic data and ligand field parameters given below to estimate the relative Boltzmann populations of the 2E_g state in $Co(NH_3)_6^{2+}$, and of the $^3T_{1g}$ and $^5T_{2g}$ states in $Co(NH_3)_6^{3+}$. Does population of any of these excited states prior to electron transfer seem likely? Explain your reasoning. $$Co(NH_3)_6^{2+}$$: $\Delta_0 = 10,100 \text{ cm}^{-1}$; B = 900 cm⁻¹; C = 3,600 cm⁻¹ $$Co(NH_3)_6^{3+}$$: $\Delta_0 = 24,000 \text{ cm}^{-1}$; B = 619 cm⁻¹; C = 3,656 cm⁻¹ ## Energies of d⁶ states: | Elicigies of a states. | | |------------------------------|----------------------------| | ¹ A _{1g} | 0 | | $^{3}T_{1g}$ | $\Delta_{\rm o}$ – 3C | | $^{3}T_{2g}$ | $\Delta_{\rm o}$ + 8B – 3C | | ¹ T _{1g} | Δ_{o} – C | | ¹ T _{2g} | $\Delta_{\rm o}$ + 16B – C | | ⁵ T _{2g} | 2∆₀ – 5B – 8C | ## Energies of d^7 states: | ⁴ T _{1g} (⁴ F, ⁴ P) | $\begin{vmatrix} \Delta_o + 9B - \varepsilon & 6B \\ 6B & -\varepsilon \end{vmatrix}$ | |--|---| | ⁴ T _{2g} | $\Delta_{\rm o}-3{\rm B}-{\rm E}[^4{\rm T}_{\rm 1g}(^4{\rm F})]$ | | ⁴ A _{2g} | $2\Delta_{o} - 3B - E[^{4}T_{1g}(^{4}F)]$ | | ² E _g | $-\Delta_0 + 4B + 4C - E[^4T_{1g}(^4F)]$ | Huang-Rhys Parameters and vibrational frequencies for $Co(NH_3)_6^{3+}$ relative to the $^1A_{1g}$ ground state: $${}^{3}T_{1g}$$, ${}^{3}T_{2g}$, ${}^{1}T_{1g}$, ${}^{1}T_{2g}$, S = 2.4, $\hbar\omega$ = 480 cm $^{-1}$ $${}^{5}\text{T}_{2g}$$, S = 9.6, $\hbar\omega$ = 435 cm $^{-1}$ Huang-Rhys Parameters and vibrational frequencies for $Co(NH_3)_6^{2+}$ relative to the $^4T_{1g}(^4F)$ ground state: $${}^{4}T_{1g}({}^{4}P)$$, ${}^{4}T_{2g}$, S = 2.4, $\hbar\omega$ = 300 cm $^{-1}$ $$^{4}A_{2g}$$, S = 9.6, $\hbar\omega$ = 250 cm $^{-1}$ $${}^{2}E_{g}$$, S = 2.4, $\hbar\omega$ = 400 cm $^{-1}$ 2) The Ti(III) oxidation state is rare in terrestrial minerals due to the comparatively highly oxidizing environment on Earth. Trivalent titanium does occur in extraterrestrial materials; one example is a titanium pyroxene found in the Allende meteorite. The empirical formula for this mineral is $Ca_{1.01}Mg_{0.38}(Ti^{3+})_{0.34}(Ti^{4+})_{0.14}Al_{0.87}Si_{1.26}O_6$. The crystal structure reveals that this mineral contains chains of edge-shared distorted octahedra with $Ti^{3+/4+}$ ions at the center. The Ti-Ti distance is 3.15 Å. The polarized single-crystal absorption spectra of the Ti^{3+} - Ti^{4+} pyroxene from the Allende meteorite at different pressures are shown below (α and β refer to two different polarization directions). Propose assignments for the absorption bands at 14,000, 16,000, and 20,000 cm⁻¹ (1 bar). On the basis of your assignments, offer explanations for the pressure dependent behavior of the three bands.