Problem Set 8

Ch 153a – Winter 2022

Due: 25 February, 2022

1) Consider the following series of redox couples in aqueous solution:

$$V^{3+/2+}$$
, $Cr^{3+/2+}$, $Mn^{3+/2+}$, $Fe^{3+/2+}$, $Co^{3+/2+}$

The reduction potentials for these couples (E°) can be defined in terms of the ionization potentials for the gaseous ions (IP) and the heats of hydration for the ions (ΔH_{aq}), as suggested by the following Born-Haber cycle:

$$M^{3+} + e^{-} \rightarrow M^{2+}$$

$$\Delta H_{aq}(M^{3+}) \downarrow \qquad \downarrow \Delta H_{aq}(M^{2+})$$

$$E^{\circ}$$

$$M_{aq}^{3+} + e^{-} \rightarrow M_{aq}^{2+}$$

- a) Find the standard reduction potentials (E°) for each pair, citing the reference used.
- b) Find the ionization potential for each M²⁺ ion, citing the reference used.
- c) Find the enthalpies of hydration for each M^{2+} and M^{3+} ion, citing the reference used.
- d) Plot IP, E° , $\Delta H_{aq}(M^{3+})$, and $\Delta H_{aq}(M^{2+})$ vs. the atomic number of each metal. Explain the trends in terms of the electronic structures of the ions.
- 2) The reaction between $Ru(bpy)_3^+$ and $Ru(bpy)_3^{3+}$ produces light with a spectrum that closely matches that of MLCT-excited $Ru(bpy)_3^{2+}$ (*Ru(bpy)₃²⁺).

The relevant reduction potentials for Ru(bpy)₃²⁺ are:

$$E^{\circ}(\text{Ru}(\text{bpy})_3^{3+}/\text{Ru}(\text{bpy})_3^{2+}) = 1.25 \text{ V vs. NHE}$$

$$E^{\circ}(Ru(bpy)_3^{2+}/Ru(bpy)_3^{+}) = -1.25 \text{ V vs. NHE}$$

The energy difference between the minimum of the ground-state potential energy surface and that of $*Ru(bpy)_3^{2+}$ is approximately 2.0 eV.

Explain why the $Ru(bpy)_3^+ + Ru(bpy)_3^{3+}$ reaction is chemiluminescent.

3) Rate and driving force data for electron-transfer reactions of $Co(OH_2)_6^{3+}$ and $Co(NH_3)_6^{3+}$ are given in the following two tables. Marcus developed a "cross-relation" that describes the rate constant for a cross reaction (k_{12}) in terms of the equilibrium constant for the reaction (K_{12}) and the electron self-exchange rate constants for each reactant (k_{11} , k_{22}):

$$k_{12} = \left(k_{11}k_{22}K_{12}f_{12}\right)^{1/2}$$

$$\ln(f_{12}) = \frac{\left(\ln(K_{12})\right)^2}{4\ln\left(\frac{k_{11}k_{22}}{Z^2}\right)}$$

The collision frequency (Z) is assumed to be $10^{11} \,\mathrm{M}^{-1}\mathrm{s}^{-1}$

- a) Use the data in the tables and the Marcus cross-relation to estimate values for the self-exchange rate constants of $Co(OH_2)_6^{3+}$ and $Co(NH_3)_6^{3+}$.
- b) Compare these two self-exchange rate constants to values reported in the literature. Discuss the quality of the agreement between measured self-exchange rate constants and those calculated using the cross-relation. Offer possible explanations for any discrepancies that you find.

Co(OH ₂) ₆ ³⁺ Reactions				
Reductant	k_{22} , $M^{-1}s^{-1}$	k_{12} , $M^{-1}s^{-1}$	$-\Delta G^{\circ}$, kJ mol $^{-1}$	
Co(Me ₂ [14]4,7-dieneN ₄ -6- one)(OH ₂) ₂ ²⁺	4.40 × 10 ⁻³	3.84×10^2	128	
Co(Me ₂ pyo[14]trieneN ₄)(OH ₂) ₂ ²⁺	9.3×10^{-2}	3.46×10^2	131	
Co(Me ₄ [14]tetraeneN ₄)(OH ₂) ₂ ²⁺	5.0×10^{-2}	2.20×10^2	131	
Co(Me ₆ [14]4,11-dieneN ₄)(OH ₂) ₂ ²⁺	4.50×10^{-5}	1.0×10^{1}	131	
Co([14]aneN ₄)(OH ₂) ₂ ²⁺	8.00×10^{-4}	6.65×10^{2}	145	
Co([15]aneN ₄)(OH ₂) ₂ ²⁺	6.00×10^{-3}	2.70×10^2	124	
Co(sep) ²⁺	5	5.77×10^2	156	
Ru(NH ₃) ₄ (phen) ²⁺	3.25×10^6	4.00×10^4	136	
Ni([14]aneN ₄)(OH ₂) ₂ ²⁺	1.20×10^3	8.6×10^{1}	89.4	
Ni(Me ₆ [14]4,11-dieneN ₄) ²⁺	6	1.20×10^2	54	
Fe(5-NO ₂ -phen) ₃ ²⁺	2.00×10^{9}	1.49×10^3	59.3	
Fe(5-Cl-phen) ₃ ²⁺	2.00×10^{9}	5.00×10^3	71.8	
Fe(phen) ₃ ²⁺	2.00×10^{9}	1.40×10^4	77.6	
Fe(5-CH ₃ -phen) ₃ ²⁺	2.00×10^{9}	1.50×10^4	80.3	
Fe(OH ₂) ₆ ²⁺	4	5.00×10^{1}	113.3	
V(OH ₂) ₆ ²⁺	3.00×10^{-3}	9.00×10^{5}	207.2	
Cr(OH ₂) ₆ ²⁺	1.00×10^{-5}	1.30×10^4	225	
U ³⁺	5.00×10^{-1}	1.10×10^6	245.8	

Co(NH ₃) ₆ ³⁺ Reactions				
Reductant	k_{22} , $M^{-1}s^{-1}$	k_{12} , $M^{-1}s^{-1}$	$-\Delta G^{\circ}$, kJ mol $^{-1}$	
Ru(NH ₃) ₆ ²⁺	4.00×10^3	2.4×10^{-2}	3.8	
V(OH ₂) ₆ ²⁺	3.00×10^{-3}	1.00×10^{-2}	31.4	
Cr(bpy) ₃ ²⁺	2.00×10^{9}	3.10×10^2	34.7	
Cr(phen) ₃ ²⁺	2.00×10^{9}	3.10×10^2	36.6	
Cr(OH ₂) ₆ ²⁺	1.00×10^{-5}	1.00×10^{-3}	49.2	
U ³⁺	5.00×10^{-1}	1.30	69.9	

4) Jim Mayer and coworkers examined the reactions of permanganate with a variety of H-atom donors (*Inorg. Chem.* **1997**, *36*, 2069-2078). They used a thermodynamic cycle based on the $MnO_4^{-/2-}$ reduction potential, the pKa of $Mn(OH)O_3^-$, the dissociation enthalpy of H_2 , and the solvation enthalpy of H_2^+ to estimate the H–O bond dissociation enthalpy of $Mn(OH)O_3^-$.

Using an analogous thermodynamic cycle, along with the bond-dissociation enthalpies and pKa values given in the Table below, estimate the reduction potentials for the couples given in the Table. Try to find E° values for these redox couples in the literature. How do they compare? Suggest possible reasons for any significant discrepancies.

Couple	p <i>K</i> a	BDE (kcal/mol)
HO*/-	14	119.2
CH ₃ O•/-	16	104.4
t-C ₄ H ₉ OO•/-	4.5	89.4
•/-	-10	71.4
Br•∕-	-8.5	86.5
CI•/-	-7	102
F*/-	3.45	134