Problem Set 8 ## Ch 153a – Winter 2022 Due: 25 February, 2022 1) Consider the following series of redox couples in aqueous solution: $$V^{3+/2+}$$, $Cr^{3+/2+}$, $Mn^{3+/2+}$, $Fe^{3+/2+}$, $Co^{3+/2+}$ The reduction potentials for these couples (E°) can be defined in terms of the ionization potentials for the gaseous ions (IP) and the heats of hydration for the ions (ΔH_{aq}), as suggested by the following Born-Haber cycle: $$M^{3+} + e^{-} \rightarrow M^{2+}$$ $$\Delta H_{aq}(M^{3+}) \downarrow \qquad \downarrow \Delta H_{aq}(M^{2+})$$ $$E^{\circ}$$ $$M_{aq}^{3+} + e^{-} \rightarrow M_{aq}^{2+}$$ - a) Find the standard reduction potentials (E°) for each pair, citing the reference used. - b) Find the ionization potential for each M²⁺ ion, citing the reference used. - c) Find the enthalpies of hydration for each M^{2+} and M^{3+} ion, citing the reference used. - d) Plot IP, E° , $\Delta H_{aq}(M^{3+})$, and $\Delta H_{aq}(M^{2+})$ vs. the atomic number of each metal. Explain the trends in terms of the electronic structures of the ions. - 2) The reaction between $Ru(bpy)_3^+$ and $Ru(bpy)_3^{3+}$ produces light with a spectrum that closely matches that of MLCT-excited $Ru(bpy)_3^{2+}$ (*Ru(bpy)₃²⁺). The relevant reduction potentials for Ru(bpy)₃²⁺ are: $$E^{\circ}(\text{Ru}(\text{bpy})_3^{3+}/\text{Ru}(\text{bpy})_3^{2+}) = 1.25 \text{ V vs. NHE}$$ $$E^{\circ}(Ru(bpy)_3^{2+}/Ru(bpy)_3^{+}) = -1.25 \text{ V vs. NHE}$$ The energy difference between the minimum of the ground-state potential energy surface and that of $*Ru(bpy)_3^{2+}$ is approximately 2.0 eV. Explain why the $Ru(bpy)_3^+ + Ru(bpy)_3^{3+}$ reaction is chemiluminescent. 3) Rate and driving force data for electron-transfer reactions of $Co(OH_2)_6^{3+}$ and $Co(NH_3)_6^{3+}$ are given in the following two tables. Marcus developed a "cross-relation" that describes the rate constant for a cross reaction (k_{12}) in terms of the equilibrium constant for the reaction (K_{12}) and the electron self-exchange rate constants for each reactant (k_{11} , k_{22}): $$k_{12} = \left(k_{11}k_{22}K_{12}f_{12}\right)^{1/2}$$ $$\ln(f_{12}) = \frac{\left(\ln(K_{12})\right)^2}{4\ln\left(\frac{k_{11}k_{22}}{Z^2}\right)}$$ The collision frequency (Z) is assumed to be $10^{11} \,\mathrm{M}^{-1}\mathrm{s}^{-1}$ - a) Use the data in the tables and the Marcus cross-relation to estimate values for the self-exchange rate constants of $Co(OH_2)_6^{3+}$ and $Co(NH_3)_6^{3+}$. - b) Compare these two self-exchange rate constants to values reported in the literature. Discuss the quality of the agreement between measured self-exchange rate constants and those calculated using the cross-relation. Offer possible explanations for any discrepancies that you find. | Co(OH ₂) ₆ ³⁺ Reactions | | | | | |---|---------------------------|---------------------------|--------------------------------------|--| | Reductant | k_{22} , $M^{-1}s^{-1}$ | k_{12} , $M^{-1}s^{-1}$ | $-\Delta G^{\circ}$, kJ mol $^{-1}$ | | | Co(Me ₂ [14]4,7-dieneN ₄ -6-
one)(OH ₂) ₂ ²⁺ | 4.40 × 10 ⁻³ | 3.84×10^2 | 128 | | | Co(Me ₂ pyo[14]trieneN ₄)(OH ₂) ₂ ²⁺ | 9.3×10^{-2} | 3.46×10^2 | 131 | | | Co(Me ₄ [14]tetraeneN ₄)(OH ₂) ₂ ²⁺ | 5.0×10^{-2} | 2.20×10^2 | 131 | | | Co(Me ₆ [14]4,11-dieneN ₄)(OH ₂) ₂ ²⁺ | 4.50×10^{-5} | 1.0×10^{1} | 131 | | | Co([14]aneN ₄)(OH ₂) ₂ ²⁺ | 8.00×10^{-4} | 6.65×10^{2} | 145 | | | Co([15]aneN ₄)(OH ₂) ₂ ²⁺ | 6.00×10^{-3} | 2.70×10^2 | 124 | | | Co(sep) ²⁺ | 5 | 5.77×10^2 | 156 | | | Ru(NH ₃) ₄ (phen) ²⁺ | 3.25×10^6 | 4.00×10^4 | 136 | | | Ni([14]aneN ₄)(OH ₂) ₂ ²⁺ | 1.20×10^3 | 8.6×10^{1} | 89.4 | | | Ni(Me ₆ [14]4,11-dieneN ₄) ²⁺ | 6 | 1.20×10^2 | 54 | | | Fe(5-NO ₂ -phen) ₃ ²⁺ | 2.00×10^{9} | 1.49×10^3 | 59.3 | | | Fe(5-Cl-phen) ₃ ²⁺ | 2.00×10^{9} | 5.00×10^3 | 71.8 | | | Fe(phen) ₃ ²⁺ | 2.00×10^{9} | 1.40×10^4 | 77.6 | | | Fe(5-CH ₃ -phen) ₃ ²⁺ | 2.00×10^{9} | 1.50×10^4 | 80.3 | | | Fe(OH ₂) ₆ ²⁺ | 4 | 5.00×10^{1} | 113.3 | | | V(OH ₂) ₆ ²⁺ | 3.00×10^{-3} | 9.00×10^{5} | 207.2 | | | Cr(OH ₂) ₆ ²⁺ | 1.00×10^{-5} | 1.30×10^4 | 225 | | | U ³⁺ | 5.00×10^{-1} | 1.10×10^6 | 245.8 | | | Co(NH ₃) ₆ ³⁺ Reactions | | | | | |---|---------------------------|---------------------------|--------------------------------------|--| | Reductant | k_{22} , $M^{-1}s^{-1}$ | k_{12} , $M^{-1}s^{-1}$ | $-\Delta G^{\circ}$, kJ mol $^{-1}$ | | | Ru(NH ₃) ₆ ²⁺ | 4.00×10^3 | 2.4×10^{-2} | 3.8 | | | V(OH ₂) ₆ ²⁺ | 3.00×10^{-3} | 1.00×10^{-2} | 31.4 | | | Cr(bpy) ₃ ²⁺ | 2.00×10^{9} | 3.10×10^2 | 34.7 | | | Cr(phen) ₃ ²⁺ | 2.00×10^{9} | 3.10×10^2 | 36.6 | | | Cr(OH ₂) ₆ ²⁺ | 1.00×10^{-5} | 1.00×10^{-3} | 49.2 | | | U ³⁺ | 5.00×10^{-1} | 1.30 | 69.9 | | 4) Jim Mayer and coworkers examined the reactions of permanganate with a variety of H-atom donors (*Inorg. Chem.* **1997**, *36*, 2069-2078). They used a thermodynamic cycle based on the $MnO_4^{-/2-}$ reduction potential, the pKa of $Mn(OH)O_3^-$, the dissociation enthalpy of H_2 , and the solvation enthalpy of H_2^+ to estimate the H–O bond dissociation enthalpy of $Mn(OH)O_3^-$. Using an analogous thermodynamic cycle, along with the bond-dissociation enthalpies and pKa values given in the Table below, estimate the reduction potentials for the couples given in the Table. Try to find E° values for these redox couples in the literature. How do they compare? Suggest possible reasons for any significant discrepancies. | Couple | p <i>K</i> a | BDE (kcal/mol) | |---------------------------------------|--------------|----------------| | HO*/- | 14 | 119.2 | | CH ₃ O•/- | 16 | 104.4 | | t-C ₄ H ₉ OO•/- | 4.5 | 89.4 | | •/- | -10 | 71.4 | | Br•∕- | -8.5 | 86.5 | | CI•/- | -7 | 102 | | F*/- | 3.45 | 134 |