Problem Set 2

Ch 153a – Winter 2022 Due: 14 January, 2022

1) Electronic Spectrum of CsV(SO₄)₂•12H₂O

The UV/Vis absorption spectrum of a single crystal of the $CsV(SO_4)_2 \cdot 12H_2O$ alum at 16 K is shown at the right.

- a) What is the ground-state term symbol for the $[V(OH_2)_6]^{3+}$ ion considering just the VO_6 unit in O_h symmetry (*i.e.*, ignoring H atoms and π bonding)?
- b) Propose assignments for the two absorption features in the single-crystal spectrum of $CsV(SO_4)_2 \cdot 12H_2O$, assuming O_h symmetry.
- c) How would you adjust your assignments if you consider the true S_6 symmetry of the $[V(OH_2)_6]^{3+}$ ion in the alum?

2) Electronic Structure and Spectra of Metal Oxo and Nitrido Complexes

The $d\pi$ -orbital splitting for a tetragonal oxo- or nitrido-metal complex is shown above.

The following states arise from the d^1 , d^2 , and d^3 configurations in this scheme:

 d^1 : $^{2}E[(xz,yz)^{1}]$ $\mathsf{E} = \Delta_{\pi}$ $^{2}B_{2}[(xy)^{1}]$ E = 0 d^2 : $^{3}A_{2}[(xz,yz)^{2}]$ $\mathsf{E} = 2\Delta_\pi + \mathsf{A} - \mathsf{5B}$ $^{1}A_{1}[(xz,yz)^{2}]$ $E = 2\Delta_{\pi} + A + 7B + 4C$ ${}^{1}B_{1}[(xz,yz)^{2}]$ $E = 2\Delta_{\pi} + A + B + 2C$ ${}^{1}B_{2}[(xz,yz)^{2}]$ $E = 2\Delta_{\pi} + A + B + 2C$ $^{1}E[(xy)^{1}(xz,yz)^{1}]$ $E = \Delta_{\pi} + A + B + 2C$ $^{3}E[(xy)^{1}(xz,yz)^{1}]$ $E = \Delta_{\pi} + A - 5B$ $^{1}A_{1}[(xy)^{2}]$ E = A + 4B + 3C

```
\begin{array}{ll} d^3: \\ {}^2E[(xz,yz)^3] & E = 3\Delta_\pi + 3A - 3B + 4C \\ {}^4B_1[(xy)^1(xz,yz)^2] & E = 2\Delta_\pi + 3A - 15B \\ {}^2B_1[(xy)^1(xz,yz)^2] & E = 2\Delta_\pi + 3A - 6B + 3C \\ {}^2A_1[(xy)^1(xz,yz)^2] & E = 2\Delta_\pi + 3A - 6B + 3C \\ {}^2B_2[(xy)^1(xz,yz)^2] & E = 2\Delta_\pi + 3A + 5C \\ {}^2A_2[(xy)^1(xz,yz)^2] & E = 2\Delta_\pi + 3A - 6B + 3C \\ {}^2E[(xy)^2(xz,yz)^1] & E = \Delta_\pi + 3A - 3B + 4C \end{array}
```

The absorption spectra of $Cr^{V}(N)(CN)_{5}^{3-}$ and $Mn^{V}(N)(CN)_{5}^{3-}$ are shown below.

In $Cr^{V}(N)(CN)_{5}^{3-}$, the ${}^{2}B_{2}[(xy)] \rightarrow {}^{2}E[(xz,yz)]$ absorption band is at 23,300 cm⁻¹.

In Mn^V(N)(CN)₅³⁻, the ${}^{1}A_{1}[(xy)^{2}] \rightarrow {}^{1}E[(xy)(xz,yz)]$ absorption band is at 19,400 cm⁻¹.

Use the foregoing orbital splitting diagram and the state energies to determine the values of Δ_{π} in the Cr and Mn complexes. Assume that $B=500~\text{cm}^{-1}$ and C/B = 4.

3) Spin Crossover in d² and d³ Oxo- and Nitrido Complexes

The value of Δ_{π} is not the same in all of the states of a d^2 or d^3 nitrido or oxo complex. The M \equiv N (or M \equiv O) bond should be longer in a $(xy)^1(xz,yz)^1$ excited state than in the $(xy)^2$ ground state. Consequently, in the relaxed $(xy)^1(xz,yz)^1$ excited state, Δ_{π} will be smaller than it was in the ground state.

You can estimate the change in Δ_{π} from the shape of the absorption band. In Mn^V(N)(CN)₅³⁻, the parameter λ is about 3,400 cm⁻¹. So if E_{abs} = 19,400 cm⁻¹, then E_{em} = 12,600 cm⁻¹. The energy gap between ³E and ¹A₁ is $\Delta_{\pi} - 9B - 3C \approx \Delta_{\pi} - 21B$.

For thermal population of a high-spin state, the relevant energy is E_{TH} (or E_{00}), which is less than the vertical energy difference: $E_{TH} = E_{abs} - \lambda$.

- a) Find the Δ_{π} values at the high-spin/low-spin crossover points for d^2 and d^3 tetragonal oxo- and nitrido-metal complexes. Assume that B = 500 cm⁻¹ and C/B = 4.
- b) Assume that you have a high-spin/low-spin equilibrium in a d^2 tetragonal oxo- or nitrido-metal complex in which $E_{TH} = 0$. What are the Δ_{π} values for high- and low-spin forms?
- c) Assume that you have a high-spin/low-spin equilibrium in a d^3 tetragonal oxo- and nitrido-metal complex in which $E_{TH} = 0$. What are the Δ_{π} values for high- and low-spin forms?
- d) What are the relative populations of the high- and low-spin states in problems (b) and (c)?
- e) Karl Wieghardt reported (*Angew. Chem. Int. Ed.* **2005**, *44*, 2908-2912) that, *unexpectedly*, the ground-state total spin of the [(cyclam-acetato)Fe^V(N)]⁺ core is S=1/2 and not S=3/2. Discuss whether you think that this result is "unexpected".