Chemistry 153a Winter 2020 Due 28 February, 2020

Problem Set 8

1. Consider the following series of redox couples in aqueous solution:

$$V^{3+/2+}$$
, $Cr^{3+/2+}$, $Mn^{3+/2+}$, $Fe^{3+/2+}$, $Co^{3+/2+}$

The reduction potentials for these couples (E°) can be defined in terms of the ionization potentials for the gaseous ions (IP) and the Gibbs energy of hydration for the ions ($\Delta G_{\rm S}^{\circ}$), as suggested by the following Born-Haber cycle:

$$IP$$

$$M^{3+} + e^{-} \rightarrow M^{2+}$$

$$\Delta G_{S}^{\circ}(M^{3+}) \downarrow \qquad \downarrow \Delta G_{S}^{\circ}(M^{2+})$$

$$E^{\circ}$$

$$M_{aq}^{3+} + e^{-} \rightarrow M_{aq}^{2+}$$

- a. Find the ionization potential for each M²⁺ ion, citing the reference used.
- b. Find the Gibbs energies of hydration for each M²⁺ and M³⁺ ion, citing the reference used.
- c. Use the foregoing cycle to calculate the standard reduction potentials (E° (calc), V vs NHE) for each M³⁺ ion. Find experimental values for each of these (E° (expt), V vs. NHE), citing the reference(s) used. Suggest possible reasons for any significant discrepancies.
- d. Plot IP, $E^{\circ}(\text{expt})$, $E^{\circ}(\text{calc})$, $\Delta G_{\text{S}}^{\circ}(\text{M}^{3+})$, and $\Delta G_{\text{S}}^{\circ}(\text{M}^{3+})$ vs. the atomic number of each metal. Explain the trends in terms of the electronic structures of the ions.
- 2. Jim Mayer and coworkers examined the reactions of permanganate with a variety of H-atom donors (*Inorg. Chem.* **1997**, *36*, 2069-2078). They used a thermodynamic cycle based on the $MnO_4^{-/2-}$ reduction potential, the pKa of $Mn(OH)O_3^-$, the dissociation enthalpy of H_2 , and the solvation enthalpy of H^{\bullet} to estimate the H–O bond dissociation enthalpy of $Mn(OH)O_3^-$.

Using an analogous thermodynamic cycle, along with the bond-dissociation enthalpies and pKa values given in the Table below, estimate the reduction potentials for the couples given in the Table. Try to find E° values for these redox couples in the literature. How do they compare? Suggest possible reasons for any significant discrepancies.

Couple	рКа	BDE (kcal/mol)
HO•/-	14	119.2
CH ₃ O ^{•/−}	16	104.4
$t-C_4H_9OO^{\bullet/-}$	4.5	89.4
•/-	-10	71.4
Br•∕-	-8.5	86.5
Cl•∕-	-7	102
F ^{•/-}	3.45	134