Chemistry 153a Winter 2020 Due 28 February, 2020 ## **Problem Set 8** 1. Consider the following series of redox couples in aqueous solution: $$V^{3+/2+}$$, $Cr^{3+/2+}$, $Mn^{3+/2+}$, $Fe^{3+/2+}$, $Co^{3+/2+}$ The reduction potentials for these couples (E°) can be defined in terms of the ionization potentials for the gaseous ions (IP) and the Gibbs energy of hydration for the ions ($\Delta G_{\rm S}^{\circ}$), as suggested by the following Born-Haber cycle: $$IP$$ $$M^{3+} + e^{-} \rightarrow M^{2+}$$ $$\Delta G_{S}^{\circ}(M^{3+}) \downarrow \qquad \downarrow \Delta G_{S}^{\circ}(M^{2+})$$ $$E^{\circ}$$ $$M_{aq}^{3+} + e^{-} \rightarrow M_{aq}^{2+}$$ - a. Find the ionization potential for each M²⁺ ion, citing the reference used. - b. Find the Gibbs energies of hydration for each M²⁺ and M³⁺ ion, citing the reference used. - c. Use the foregoing cycle to calculate the standard reduction potentials (E° (calc), V vs NHE) for each M³⁺ ion. Find experimental values for each of these (E° (expt), V vs. NHE), citing the reference(s) used. Suggest possible reasons for any significant discrepancies. - d. Plot IP, $E^{\circ}(\text{expt})$, $E^{\circ}(\text{calc})$, $\Delta G_{\text{S}}^{\circ}(\text{M}^{3+})$, and $\Delta G_{\text{S}}^{\circ}(\text{M}^{3+})$ vs. the atomic number of each metal. Explain the trends in terms of the electronic structures of the ions. - 2. Jim Mayer and coworkers examined the reactions of permanganate with a variety of H-atom donors (*Inorg. Chem.* **1997**, *36*, 2069-2078). They used a thermodynamic cycle based on the $MnO_4^{-/2-}$ reduction potential, the pKa of $Mn(OH)O_3^-$, the dissociation enthalpy of H_2 , and the solvation enthalpy of H^{\bullet} to estimate the H–O bond dissociation enthalpy of $Mn(OH)O_3^-$. Using an analogous thermodynamic cycle, along with the bond-dissociation enthalpies and pKa values given in the Table below, estimate the reduction potentials for the couples given in the Table. Try to find E° values for these redox couples in the literature. How do they compare? Suggest possible reasons for any significant discrepancies. | Couple | рКа | BDE (kcal/mol) | |----------------------------------|-----------|----------------| | HO•/- | 14 | 119.2 | | CH ₃ O ^{•/−} | 16 | 104.4 | | $t-C_4H_9OO^{\bullet/-}$ | 4.5 | 89.4 | | •/- | -10 | 71.4 | | Br•∕- | -8.5 | 86.5 | | Cl•∕- | -7 | 102 | | F ^{•/-} | 3.45 | 134 |