Problem Set 7

1. Fox and coworkers (*Science* **1990**, *247*, 1069-1071) reported the kinetics of electron transfer in a series of Ir dimers of the following type:

$$\begin{array}{c|c}
& & & \\
& & & \\
N - N, N - N \\
N - N, N - N \\
\hline
Ph & C & Ph & O \\
\hline
Ph & O & Ph & R
\end{array}$$

A plot of the driving force dependence of the rates is shown below, and a data table is shown on the following page.

Semiclassical electron-transfer theory predicts that intramolecular rates can be described by the following equation:

$$k_{ET} = \sqrt{\frac{4\pi^3}{h^2 \lambda RT}} H_{AB}^2 \exp \left\{ -\frac{(\Delta G^{\circ} + \lambda)^2}{4\lambda RT} \right\}$$

On the basis of the electron transfer rate data, determine the value of H_{AB} for this series of complexes. Predict the positions, extinction coefficients, and widths of the $Ir \rightarrow (R-py)^+$ charge transfer absorption bands for the four Ir compounds used in this study.

Table 2. Driving forces and rate constants for ET. Standard errors are 0.1 eV for $-\Delta G^{\circ}$ and $\pm 10\%$ for $k_{\rm ET}$, except where noted.

Donor	Acceptor	-ΔG° (eV)	$k_{\text{ET}} (s^{-1})$
³ Ir ₂ * ³ Ir ₂ * ¹ Ir ₂ * ¹ Ir ₂ * ¹ Ir ₂ * ⁴ -Phpy ⁴ -Mepy py	2,4,6-Me ₃ py ⁺	0.08	3.5×10^{6}
³ Ir ₂ *	4-Mepy+	0.21	1.7×10^{8}
¹ Ir ₂ *	2,4,6-Me ₃ py+	0.58	2.7×10^{10}
¹ Ir ₂ *	4-Mepy ⁺	0.71	$5.0 \times 10^{10} \times$
$^{1}\mathrm{Ir}_{2}^{2}$ *	4-Mepy ⁺	0.89	1.1×10^{11}
¹ Ir ₂ *	4-Phpy ⁺	0.97	$> 1.1 \times 10^{11}$
4-Phpy	Ir ₂ + 17	1.53	2.0×10^{10}
4-Mepv	Ir ₂ ⁺	1.61	6.7×10^{9}
pv. 17	Ir ₂ +	1.79	3.3×10^{9}
2,4,6-Me ₃ py•	4-Phpy ⁺ Ir ₂ ⁺ Ir ₂ ⁺ Ir ₂ ⁺ Ir ₂ ⁺	1.92	6.7×10^{7}

^{*±30%.}

2. The Ti(III) oxidation state is rare in terrestrial minerals due to the comparatively highly oxidizing environment on Earth. Trivalent titanium does occur in extraterrestrial materials; one example is a titanium pyroxene found in the Allende meteorite. The empirical formula for this mineral is $Ca_{1.01}Mg_{0.38}(Ti^{3+})_{0.34}(Ti^{4+})_{0.14}Al_{0.87}Si_{1.26}O_6$. The crystal structure reveals that this mineral contains chains of edge-shared distorted octahedra with $Ti^{3+/4+}$ ions at the center. The Ti-Ti distance is 3.15 Å. The polarized single-crystal absorption spectra of the Ti^{3+} - Ti^{4+} pyroxene from the Allende meteorite at different pressures are shown below (α and β refer to two different polarization directions).

Propose assignments for the absorption bands at 14,000, 16,000, and 20,000 cm⁻¹ (1 bar). On the basis of your assignments, offer explanations for the pressure dependent behavior of the three bands.

