Ch153a Winter 2020 Due 31 January, 2020

Problem Set 4

1. Low-spin d^6 metal hexacarbonyl compounds exhibit two intense ($\epsilon > 10^4 \, \text{M}^{-1} \, \text{cm}^{-1}$) absorption bands in the ultraviolet region of the spectrum; peak positions are listed in the following table.

Compound	Cr(CO) ₆	Mo(CO) ₆	W(CO) ₆	V(CO) ₆ ⁻	Mn(CO) ₆ ⁺	Re(CO) ₆ ⁺
$v_{1,\text{max}}$ (cm ⁻¹)	35,700	34,600	34,650	28,400	44,500	44,500
$v_{2,\text{max}}$ (cm ⁻¹)	43,600	42,800	43,750	37,550	49,900	51,200

- a. Construct an MO diagram for d^6 metal hexacarbonyl compounds assuming O_h symmetry using: five metal nd orbitals; one metal (n+1)s orbital; three (n+1)p orbitals; six CO σ orbitals; twelve CO π orbitals; and twelve CO π^* orbitals. Give the electronic configuration and term symbol for the ground electronic state.
- b. Propose assignments for the two intense ultraviolet absorption bands in each compound. Identify the one-electron transitions giving rise to the bands and the term symbols for the resulting excited states.
- 2. John Ellis and coworkers have synthesized and partially characterized Na₃[Nb(CO)₅] and Cs₃[Nb(CO)₅] (*Inorg. Chem.*, **1998**, *37*, 6518-6527).
 - a. What is the oxidation state of Nb in these compounds? Give references for any examples that you can find of complexes with metals in even lower oxidation states.
 - b. Based on the IR spectrum of $Cs_3[Nb(CO)_5]$ shown in Figure 2 of the Ellis paper, propose and discuss the geometrical structure of $Nb(CO)_5^{3-}$.
 - c. Based on the symmetry of your proposed structure, construct an MO diagram for the Nb anions using: five metal nd orbitals; one metal (n+1)s orbital; three (n+1)p orbitals; five CO σ orbitals; ten CO π orbitals; and ten CO π^* orbitals. Give the electronic configuration and term symbol for the ground electronic state.
 - d. Ellis also reports Nb(PF₃)₆⁻ and compares it to Nb(CO)₆⁻. Do you think PF₃ is a better π -acceptor than CO? Why or why not?