Ch153a Winter 2020 Due 31 January, 2020 ## **Problem Set 4** 1. Low-spin d^6 metal hexacarbonyl compounds exhibit two intense ($\epsilon > 10^4 \, \text{M}^{-1} \, \text{cm}^{-1}$) absorption bands in the ultraviolet region of the spectrum; peak positions are listed in the following table. | Compound | Cr(CO) ₆ | Mo(CO) ₆ | W(CO) ₆ | V(CO) ₆ ⁻ | Mn(CO) ₆ ⁺ | Re(CO) ₆ ⁺ | |--|---------------------|---------------------|--------------------|---------------------------------|----------------------------------|----------------------------------| | $v_{1,\text{max}}$ (cm ⁻¹) | 35,700 | 34,600 | 34,650 | 28,400 | 44,500 | 44,500 | | $v_{2,\text{max}}$ (cm ⁻¹) | 43,600 | 42,800 | 43,750 | 37,550 | 49,900 | 51,200 | - a. Construct an MO diagram for d^6 metal hexacarbonyl compounds assuming O_h symmetry using: five metal nd orbitals; one metal (n+1)s orbital; three (n+1)p orbitals; six CO σ orbitals; twelve CO π orbitals; and twelve CO π^* orbitals. Give the electronic configuration and term symbol for the ground electronic state. - b. Propose assignments for the two intense ultraviolet absorption bands in each compound. Identify the one-electron transitions giving rise to the bands and the term symbols for the resulting excited states. - 2. John Ellis and coworkers have synthesized and partially characterized Na₃[Nb(CO)₅] and Cs₃[Nb(CO)₅] (*Inorg. Chem.*, **1998**, *37*, 6518-6527). - a. What is the oxidation state of Nb in these compounds? Give references for any examples that you can find of complexes with metals in even lower oxidation states. - b. Based on the IR spectrum of $Cs_3[Nb(CO)_5]$ shown in Figure 2 of the Ellis paper, propose and discuss the geometrical structure of $Nb(CO)_5^{3-}$. - c. Based on the symmetry of your proposed structure, construct an MO diagram for the Nb anions using: five metal nd orbitals; one metal (n+1)s orbital; three (n+1)p orbitals; five CO σ orbitals; ten CO π orbitals; and ten CO π^* orbitals. Give the electronic configuration and term symbol for the ground electronic state. - d. Ellis also reports Nb(PF₃)₆⁻ and compares it to Nb(CO)₆⁻. Do you think PF₃ is a better π -acceptor than CO? Why or why not?