Ch153a Winter 2019 Due 8 February, 2019

Problem Set 5

- 1. Jim Mayer and coworkers examined the reactions of permanganate with a variety of H-atom donors (*Inorg. Chem.* **1997**, *36*, 2069-2078). They used a thermodynamic cycle based on the $MnO_4^{-/2-}$ reduction potential, the pKa of $Mn(OH)O_3^-$, the dissociation enthalpy of H_2 , and the solvation enthalpy of H^0 to estimate the H–O bond dissociation enthalpy of $Mn(OH)O_3^-$.
 - Develop an analogous thermodynamic cycle for the couples in the Table below. Using the bond-dissociation enthalpies and pKa values given in the Table below, estimate the reduction potentials for the couples given in the Table. Try to find E° values for these redox couples in the literature. How do they compare? Suggest possible reasons for any significant discrepancies.

Couple	p <i>K</i> a	BDE (kcal/mol)
HO•/-	14	119.2
CH₃O ^{•/−}	16	104.4
CH ₃ •/-	50	104.9
t-C ₄ H ₉ OO•/-	4.5	89.4
•/-	-10	71.4
Br•∕−	-8.5	86.5
Cl•/-	-7	102
F•/-	3.45	134

- 2. Consider an iron-oxo complex LFe(O)⁺ (where L is a dianionic ligand) that undergoes electron and proton transfer reactions as described by the diagram on the right. Assume that the potentials are defined with respect to the reference electrode potential E_{ref}° .
 - (a) Express $\Delta E^{\circ} \equiv E_1^{\circ} E_2^{\circ}$ as a function of $pK_{a,red}$ and $pK_{a,ox}$.
 - (b) Express E_3° as a function of E_1° and p $K_{a,red}$.
 - (c) Express E_3° as a function of E_2° and p $K_{a,ox}$.

LFe(O)⁺ + H⁺ +
$$e^- \xrightarrow{E_1^{\circ}}$$
 LFe(O) + H⁺

$$pK_{a,ox} \uparrow \qquad pK_{a,red}$$
LFe(OH)²⁺ + $e^- \xrightarrow{E_2^{\circ}}$ LFe(OH)⁺

- 3. The p K_a values for alkanes are generally assumed to be ~50.
 - (a) Use the value obtained for $E^{\circ}(CH_3^{\bullet/-})$ in problem (1) to estimate the standard potential for the following half-reaction:

$$CH_3^{\bullet} + H^{+} + e^{-} \rightarrow CH_4$$

- (b) For the LFe(O)⁺ complex of problem 2, assume that $E_1^{\circ} = 1.0 \text{ V}$ vs NHE, and p $K_{a,\text{red}} = 10$. Calculate the value of E_3° .
- (c) On the basis of your answers to (a) and (b), would the following reaction be spontaneous? LFe(O)⁺ + CH₄ \rightarrow LFe(OH)⁺ + CH₃•
- (d) If the reaction in part (c) is not spontaneous, what would the C-H BDE have to been in order for the following reaction to be spontaneous (assume the alkane $pK_a = 50$):

$$LFe(O)^+ + RH \rightarrow LFe(OH)^+ + R^{\bullet}$$

4. The standard free energies of formation of $CH_3OH_{(aq)}$, $H_{2(g)}$, $CH_{4(g)}$ and $H_2O_{(l)}$ are given in the Table.

	ΔG_f° (kcal mol $^{-1}$)
CH ₃ OH _(aq)	-41.7
H _{2(g)}	0
CH _{4(g)}	-12.1
H ₂ O _(I)	-56.7

(a) Use the data in the Table to define the standard reduction potential for the following half reaction:

$$CH_3OH_{(aq)} + 2H^+ + 2e^- \rightarrow CH_{4(g)} + H_2O_{(I)}$$

(b) Use your results from 3(a) and 4(a) to estimate the standard reduction potential for the following half reaction:

$$CH_3OH_{(aq)} + H^+ + e^- \rightarrow CH_3^{\bullet} + H_2O_{(I)}$$

(c) Consider the following reaction:

$$LFe(OH)^{+} + CH_{3}^{\bullet} + H_{2}O \rightarrow Fe(OH_{2})^{+} + CH_{3}OH$$

In order for this reaction to be spontaneous, what standard potential is required for the following half-reaction:

LFe(OH)⁺ + H⁺ +
$$e^- \rightarrow$$
 Fe(OH₂)⁺