Ch153a Winter 2019 Due 8 February, 2019 ## **Problem Set 5** - 1. Jim Mayer and coworkers examined the reactions of permanganate with a variety of H-atom donors (*Inorg. Chem.* **1997**, *36*, 2069-2078). They used a thermodynamic cycle based on the $MnO_4^{-/2-}$ reduction potential, the pKa of $Mn(OH)O_3^-$, the dissociation enthalpy of H_2 , and the solvation enthalpy of H^0 to estimate the H–O bond dissociation enthalpy of $Mn(OH)O_3^-$. - Develop an analogous thermodynamic cycle for the couples in the Table below. Using the bond-dissociation enthalpies and pKa values given in the Table below, estimate the reduction potentials for the couples given in the Table. Try to find E° values for these redox couples in the literature. How do they compare? Suggest possible reasons for any significant discrepancies. | Couple | p <i>K</i> a | BDE (kcal/mol) | |---------------------------------------|--------------|----------------| | HO•/- | 14 | 119.2 | | CH₃O ^{•/−} | 16 | 104.4 | | CH ₃ •/- | 50 | 104.9 | | t-C ₄ H ₉ OO•/- | 4.5 | 89.4 | | •/- | -10 | 71.4 | | Br•∕− | -8.5 | 86.5 | | Cl•/- | -7 | 102 | | F•/- | 3.45 | 134 | - 2. Consider an iron-oxo complex LFe(O)⁺ (where L is a dianionic ligand) that undergoes electron and proton transfer reactions as described by the diagram on the right. Assume that the potentials are defined with respect to the reference electrode potential E_{ref}° . - (a) Express $\Delta E^{\circ} \equiv E_1^{\circ} E_2^{\circ}$ as a function of $pK_{a,red}$ and $pK_{a,ox}$. - (b) Express E_3° as a function of E_1° and p $K_{a,red}$. - (c) Express E_3° as a function of E_2° and p $K_{a,ox}$. LFe(O)⁺ + H⁺ + $$e^- \xrightarrow{E_1^{\circ}}$$ LFe(O) + H⁺ $$pK_{a,ox} \uparrow \qquad pK_{a,red}$$ LFe(OH)²⁺ + $e^- \xrightarrow{E_2^{\circ}}$ LFe(OH)⁺ - 3. The p K_a values for alkanes are generally assumed to be ~50. - (a) Use the value obtained for $E^{\circ}(CH_3^{\bullet/-})$ in problem (1) to estimate the standard potential for the following half-reaction: $$CH_3^{\bullet} + H^{+} + e^{-} \rightarrow CH_4$$ - (b) For the LFe(O)⁺ complex of problem 2, assume that $E_1^{\circ} = 1.0 \text{ V}$ vs NHE, and p $K_{a,\text{red}} = 10$. Calculate the value of E_3° . - (c) On the basis of your answers to (a) and (b), would the following reaction be spontaneous? LFe(O)⁺ + CH₄ \rightarrow LFe(OH)⁺ + CH₃• - (d) If the reaction in part (c) is not spontaneous, what would the C-H BDE have to been in order for the following reaction to be spontaneous (assume the alkane $pK_a = 50$): $$LFe(O)^+ + RH \rightarrow LFe(OH)^+ + R^{\bullet}$$ 4. The standard free energies of formation of $CH_3OH_{(aq)}$, $H_{2(g)}$, $CH_{4(g)}$ and $H_2O_{(l)}$ are given in the Table. | | ΔG_f° (kcal mol $^{-1}$) | |------------------------------------|--| | CH ₃ OH _(aq) | -41.7 | | H _{2(g)} | 0 | | CH _{4(g)} | -12.1 | | H ₂ O _(I) | -56.7 | (a) Use the data in the Table to define the standard reduction potential for the following half reaction: $$CH_3OH_{(aq)} + 2H^+ + 2e^- \rightarrow CH_{4(g)} + H_2O_{(I)}$$ (b) Use your results from 3(a) and 4(a) to estimate the standard reduction potential for the following half reaction: $$CH_3OH_{(aq)} + H^+ + e^- \rightarrow CH_3^{\bullet} + H_2O_{(I)}$$ (c) Consider the following reaction: $$LFe(OH)^{+} + CH_{3}^{\bullet} + H_{2}O \rightarrow Fe(OH_{2})^{+} + CH_{3}OH$$ In order for this reaction to be spontaneous, what standard potential is required for the following half-reaction: LFe(OH)⁺ + H⁺ + $$e^- \rightarrow$$ Fe(OH₂)⁺