Ch153a Winter 2019 Due 1 February, 2019

Problem Set 4

1. It should be clear from the Pourbaix diagrams you produced for Problem Set 3 that the electrode potential for the four-electron, four-proton oxidation of water is substantially lower than those for some of the steps in the sequential one-electron oxidation of water to dioxygen. The stepwise oxidation of water, then, requires large overpotentials; these overpotentials can be reduced if the intermediates in the water oxidation sequence are bound to metal complexes as illustrated below. Define the potential for redox reaction *g* from question 1 (pH 7, 25 °C) to be equal to that for the oxygen evolving reaction (*E*_{OER}).

$$2H_{2}O + M(OH_{2})_{2}^{n+}$$

$$E_{d} \uparrow \downarrow \qquad \qquad \stackrel{E_{OER}}{\swarrow}$$

$$2HO^{\bullet} + 2H^{+} + 2e^{-} + M(OH_{2})_{2}^{n+} \qquad \stackrel{K_{1}}{\hookleftarrow} \qquad 2H^{+} + 2e^{-} + M(OH)_{2}^{n+} + 2H_{2}O$$

$$\Delta G_{1}^{\circ} \uparrow \downarrow \qquad \qquad \Delta G^{\circ} = 0 \uparrow \downarrow$$

$$H_{2}O_{2} + 2H^{+} + 2e^{-} + M(OH_{2})_{2}^{n+} \qquad \stackrel{K_{2}}{\hookleftarrow} \qquad 3H^{+} + 2e^{-} + M(OH_{2})(O_{2}H)^{(n-1)+} + H_{2}O$$

$$E_{b} \uparrow \downarrow \qquad \qquad E_{OER} \uparrow \downarrow$$

$$HO_{2}^{\bullet} + 3H^{+} + 3e^{-} + M(OH_{2})_{2}^{n+} \qquad \stackrel{K_{3}}{\hookleftarrow} \qquad 3H^{+} + 3e^{-} + M(OH_{2})(O_{2}H)^{n+} + H_{2}O$$

$$E_{a} \uparrow \downarrow \qquad \qquad E_{OER} \uparrow \downarrow$$

$$O_{2} + 4H^{+} + 4e^{-} + M(OH_{2})_{2}^{n+} \qquad \stackrel{K_{4}}{\hookleftarrow} \qquad 4H^{+} + 4e^{-} + M(OH_{2})(O_{2})^{n+} + H_{2}O$$

Use the data from your Pourbaix diagram and the answer from question 3 in Problem Set 3 (ΔG_1°) to estimate values for the equilibrium constants for binding to a generic metal center $(M(OH_2)_2^{n+})$ of the intermediates in the water oxidation sequence, *i.e.*, K_1 , K_2 , K_3 , and K_4 .

- 2. For each reaction a-i given below, calculate the standard Gibbs free energies of formation (ΔG_f°) for all reactants and products, as well as the standard Gibbs free energy change (ΔG°) for the transformation. Standard states are 25 °C, concentrations of 1 molal (1 m), partial gas pressures of 100 kPa. The ΔG_f° values for elements in their pure forms under standard-state conditions are defined to be 0. The table below contains all of the information that you will need to perform these calculations. Express your Gibbs energies in kJ mol $^{-1}$.
 - a. $2H_2CrO_{4(aq)} \rightarrow 2CrO_{2(s)} + O_2 + 2H_2O$
 - b. $2H_2MoO_{4(aq)} \rightarrow 2MoO_{2(s)} + O_2 + 2H_2O$
 - c. $2H_2WO_{4(s)} \rightarrow 2WO_{2(s)} + O_2 + 2H_2O$
 - d. $2MnO_4^{-}_{(aq)} + 2H^+ \rightarrow 2MnO_{2(s)} + \frac{3}{2}O_2 + H_2O$
 - e. $2\text{TcO}_4^-(aq) + 2\text{H}^+ \rightarrow 2\text{TcO}_2(s) + \frac{3}{2}\text{O}_2 + \text{H}_2\text{O}$
 - f. $2\text{ReO}_4^-(\text{aq}) + 2\text{H}^+ \rightarrow 2\text{ReO}_2(\text{s}) + \frac{3}{2}\text{O}_2 + \text{H}_2\text{O}$
 - g. $2\text{FeO}_4^{2-}(aq) + 4\text{H}^+ \rightarrow \text{Fe}_2\text{O}_3(s) + \frac{3}{2}\text{O}_2 + 2\text{H}_2\text{O}$
 - h. $RuO_{4(aq)} \rightarrow RuO_{2(s)} + O_2$
 - i. $OsO_{4(aq)} \rightarrow OsO_{2(s)} + O_2$

Species	Conditions	ΔG _f ° kJ mol ^{−1}
H ⁺	1 m, aqueous solution	0
Half-reaction		<i>E</i> °, V vs. NHE
$O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$		1.229
$H_2CrO_{4(aq)} + 6H^+ + 6e^- \rightarrow Cr_{(s)} + 4H_2O$		0.325
$CrO_{2(s)} + 4H^+ + 4e^- \rightarrow Cr_{(s)} + 2H_2O$		-0.191
$H_2MoO_{4(aq)} + 6H^+ + 6e^- \rightarrow Mo_{(s)} + 4H_2O$		0.114
$MoO_{2(s)} + 4H^+ + 4e^- \rightarrow Mo_{(s)} + 2H_2O$		-0.152
$H_2WO_{4(s)} + 6H^+ + 6e^- \rightarrow W_{(s)} + 4H_2O$		-0.089
$WO_{2(s)} + 4H^+ + 4$	$e^- \rightarrow W_{(s)} + 2H_2O$	-0.154
$MnO_4^{-}_{(aq)} + 8H^+ +$	$7e^- \rightarrow Mn_{(s)} + 4H_2O$	0.698
$MnO_{2(s)} + 4H^+ + 4e^- \rightarrow Mn_{(s)} + 2H_2O$		0.024
$TcO_4^-(aq) + 8H^+ + 7e^- \rightarrow Tc_{(s)} + 4H_2O$		0.472
$TcO_{2(s)} + 4H^+ + 4e^- \rightarrow Tc_{(s)} + 2H_2O$		0.272
$ReO_4^{-}_{(aq)} + 8H^+ +$	$7e^- \rightarrow \text{Re}_{(s)} + 4\text{H}_2\text{O}$	0.376
$ReO_{2(s)} + 4H^+ + 4$	$e^- \rightarrow \text{Re}_{(s)} + 2\text{H}_2\text{O}$	0.216
$FeO_4^{2-}(aq) + 8H^+ +$	$6e^- \rightarrow Fe_{(s)} + 4H_2O$	1.505
$Fe_2O_{3(s)} + 6H^+ + 6$	$e^- \rightarrow 2 \text{Fe}_{(s)} + 3 \text{H}_2 \text{O}$	-0.055
$RuO_{4(aq)} + 8H^+ + 8$	$Be^- \rightarrow Ru_{(s)} + 4H_2O$	1.039
$RuO_{2(s)} + 4H^+ + 4e^- \rightarrow Ru_{(s)} + 2H_2O$		0.673
$OsO_{4(aq)} + 8H^+ + 8$	$3e^- \rightarrow Os_{(s)} + 4H_2O$	0.838
$OsO_{2(s)} + 4H^+ + 4$	$e^- \rightarrow \mathrm{Os}_{(\mathrm{s})} + 2\mathrm{H}_2\mathrm{O}$	0.687

3.	On the basis of your ΔG° values for the reactions from problem 5, which of the metal dioxides would be likely candidates for water oxidation catalysts? Would the one sesquioxide be a candidate? Explain your reasoning.	