Ch153a Winter 2019 Due 18 January, 2019

Problem Set 2

(1) The 4K single crystal absorption spectrum of KMnO₄ doped into a KClO₄ lattice and a table of peak positions are shown below.

Peak Position (cm ⁻¹)	Relative Intensity
18,072	74
18,842	100
19,602	96
20,380	59
21,145	27
21,915	10

- (a) Perform a Franck-Condon analysis of the vibrational fine structure in the absorption band.
- (b) What S_{HR}-value gives the best fit to the observed spectrum?
- (c) If the force constant for the distorting mode is 5.91 mdyne/Å, give the magnitude of the distortion in the normal mode (ΔQ).

- (d) Use group theory to define the normal mode in terms of bond stretching coordinates to estimate the magnitude of the distortion in the individual bonds.
- (2) Using the basis functions for T_d coordination with C_3 quantization developed in Problem Set 1, draw a correlation diagram relating the *d*-orbital splitting in a tetrahedral MX₄ molecule to that in a MX₃Y molecule with $C_{3\nu}$ symmetry (X and Y are strong σ and π donor ligands).
- (3) The 4K single crystal absorption spectrum of KMnO₄ doped into a KClO₄ lattice, and the gas-phase absorption spectra of MnO₃F and MnO₃Cl are shown on the following page.

The gas-phase vibrational spectra of MnO_3F and MnO_3CI exhibit symmetric Mn-O stretches at 905 and 892 cm⁻¹, respectively, and symmetric Mn-X vibrations at 721 (X = F) and 460 (X = CI) cm⁻¹. The vibrational fine structure in bands I-IV of MnO_3X is summarized in the following table.

Band	MnO₃F	MnO3Cl
I	851 cm⁻¹	825 cm⁻¹
Ш	819 cm⁻¹	783 cm⁻¹
111	653 cm⁻¹	402 cm⁻¹
IV	655 cm⁻¹	618 cm⁻¹

The assignments of the MnO_4^- absorption bands were discussed in class. Propose assignments for bands I, II, III, and IV in MnO_3F and MnO_3CI .

- (4) Consider a hypothetical trigonal ($C_{3\nu}$) Co-oxo complex with ancillary ligands L, $Co(O)L_3^{n+}$.
 - (a) Develop a ligand field splitting diagram for complexes of this type with Co(III) and Co(V) oxidation states.
 - (b) Predict the ground-state electronic structure (term symbol including spin) for each complex.
 - (c) Identify the Co-oxo bond order for each complex.